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The purpose of these notes is to introduce some basics of Fourier analysis and its application to
the analysis of singular integrals and regularity analysis. These notes are meant as supplementary
material in the PDE II class at Tulane. The notes are rough, please excuse any typos or mistakes.
In writing these notes, I have interpolated from many sources as well material in my head. Useful
references for this material and much more advanced material are Grafakos [1], Hörmander [2] and
Muscalau-Schlag [3]

1 The Fourier transform

The Fourier transform is a powerful tool that decomposes a function into its fundamental frequen-
cies. It was originally discovered and used to provide explicit solutions to the heat equation and
other linear PDEs. It has since become a powerful tool for analyzing regularity and fine properties
of functions. In these notes, we will primarily focus on the space Rn. However, there are also many
analogous applications when considering the Fourier transform on the periodic domain Tn.

Definition 1.1. Let f ∈ L1(Rn), the Fourier transform of f is defined by

F(f)(ξ) = f̂(ξ) = f∧(ξ) :=

ˆ
Rn

e−iξ·xf(x)dx.

Remark 1.2. This is not the only definition of the Fourier transform. The one I am using is
commonly (but not always) used by analysts (for instance Hörmander). However other common
definitions are ˆ

Rn

e−2πiξ·xf(x)dx and
1

(2π)n/2

ˆ
Rn

e−iξ·xf(x)dx,

which have the added benefit that they are unitary when extended to L2.

It is useful to note that a simple application of Hölder’s inequality gives the following bound

∥f̂∥L∞ ≤ ∥f∥L1

showing that the Fourier transform is a bounded operator from L1 to L∞. However, the range of
this operator in L∞ is very poorly understood and in general cannot be inverted on a general L∞

function.

1.1 Schwartz space

It is very convenient to introduce a “core” of functions where the Fourier transform can be easily
inverted on and which is dense in most space we might wise to define the Fourier transform on (i.e.
Lp for p ∈ [1,∞)).

1



Definition 1.3 (Schwartz space). A function f : Rn → C, f ∈ C∞ is called a Schwartz function if
for each multi-index α ∈ Nn, β ∈ Nn

xαDβf := xα1
1 . . . xαn

n ∂βn
x1

. . . ∂βn
xn

f ∈ L∞(Rn).

The collection of all such function we call the Schwartz space (or space of rapidly decreasing func-
tions) and denote by S(Rn). We say that a sequence of functions {fn} ⊂ S(Rn) converges to f in
S(Rn) if

∥xαDβ(fn − f)∥L∞ → 0 ∀α, β ∈ Nn.

Note that any f ∈ S(Rn) has the property that f and all of its derivatives decay faster than
any power of x and therefore we see that f ∈ W k,∞ ∩ W k,1 for any k ≥ 0. Moreover its easily
follows that C∞

c (Rn) ⊂ S(Rn) and therefore S(Rn) is dense in LP (Rn) for p ∈ [1,∞)

Remark 1.4. The space S(Rn) is clearly a linear space of functions, however it is not a Banach
space, in that it does not have a norm that can be used to define its topology. Instead S(Rn) defines
a Frèchét space, namely a locally convex topological space with a family of semi norms {ρα} that
separate points (i.e. ρα(f) = 0, ∀α implies that f = 0). In the case of S(Rn), the seminorms are
given by

ρα,β(f) := ∥xαDβf∥L∞ , α, β ∈ Nn.

The following useful properties are easy to prove for the Fourier transform on S(Rn) using basic
change of variables or integration by parts. Their proof is left as an exercise.

Proposition 1.5. Let f ∈ S(Rn) then the following properties hold

1. Let g(x) = f(x− y), then ĝ(ξ) = e−iy·ξ f̂(ξ)

2. Let g(x) = eix·ξf(x), then ĝ(ξ) = f̂(ξ − η)

3. Let g(x) = f(Tx) for T ∈ GLn(R), then ĝ(ξ) = | detT |−1f̂(T−⊤ξ).

4. Let g(x) = Dαf(x), then ĝ(ξ) = (iξ)αf̂(ξ)

5. Let g(x) = xαf(x), then ĝ(ξ) = (iD)αf̂(ξ)

6. Let g(x) = (k ⋆ f)(x) for k ∈ S(Rn), then ĝ = k̂(ξ)f̂(ξ)

Properties 1 and 2 can be seen as saying that the Fourier transform exchanges shifts for mul-
tiplication by oscillating factors and vice-versa. Properties 3 and 4 are arguably the properties
that make the Fourier transform so useful for the study of PDE namely that the Fourier transform
turns differential operators into multiplication by monomials and multiplication by monomials into
multiplication. Finally, property 6 shows that the Fourier transform converts convolutions of two
functions into multiplication.

Example 1.6 (The Gaussian). A canonical example of a function in S(Rn) is a Gaussian e−⟨x,Ax⟩,
where A is some symmetric positive definite n × n matrix. It is well known that the Fourier
transform of a Gaussian is again a Gaussian. Specifically the following formula holds

ˆ
Rn

e−⟨x,Ax⟩eiξ·xdx = πn/2(detA)−1/2e−⟨ξ,A−1ξ⟩/4. (1.1)

Exercise 1.1. Prove the Gaussian formula (1.1).
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Next we see that the Fourier transform maps the Schwartz space continuously into itself.

Lemma 1.7. Let f ∈ S(Rn), then f̂ ∈ S(Rn). Moreover, if fn → f in S(Rn), then f̂n → f̂ in
S(Rn).

Proof. Note that by properties 3 and 4 in Proposition 1.5 above, we have (up to factors of i)

ξαDβ f̂(ξ) = ξα’(xβf)(ξ) = ÿ�Dα(xβf)(ξ)

Therefore by the L1 to L∞ bound

∥ξαDβ f̂∥L∞ = ∥ÿ�Dα(xβf)∥L∞ ≤ ∥Dα(xβf)∥L1 < ∞.

The L1 norm above is finite because we can bound f and its derivatives away from zero by any
power of x to ensure integrability.

As a corollary, we now have a relatively simple proof of the Riemann Lebesgue lemma

Corollary 1.8. Let f ∈ L1(Rn), then f̂ is uniformly continuous and f(ξ) → 0 as ξ → ∞.

Proof. Let C0(Rn) be the space of continuous functions that vanish at infinity (hence uniformly
continuous). Note that this is a Banach space with respect to the L∞ norm. Now by density, for
each f ∈ L1(Rn), there exists {fn} ⊂ S(Rn) such that fn → f in L1(Rn). Therefore

∥f̂n − f̂∥L∞ ≤ ∥fn − f∥L1 .

Since f̂n ∈ S(Rn) ⊂ C0(Rn), we conclude that f ∈ C0(Rn).

It is clear that Lemma 1.7 implies that that FS(Rn) ⊂ S(Rn). In fact we will see that this
mapping is in fact an ismorphism of S(Rn). To see this, we need the Fourier inversion theorem.

Theorem 1.9 (Fourier Inversion). Let f ∈ S(Rn), then f̂∧(x) = (2π)nf(−x). In particular the
Fourier transform is invertible on S(Rn) with inverse given by

F−1f(x) =
1

(2π)n
f̂(−x) =

1

(2π)n

ˆ
Rn

eiξ·xf(ξ)dξ.

Proof. We want to show that (2π)−nf̂∧(−x) = f(x). Using the definition of the Fourier transform,
we see that

(2π)−nf̂∧(−x) =

ˆ
Rn

ˆ
Rn

(2π)−nei(x−y)·ξf(x)dxdξ.

Hence we would be done if we could show that
´
Rn e

i(x−y)·ξdξ = (2π)nδ(x − y). To do this, we

regularize using a Gaussian, multiplying ei(x−y)·ξ by e−ϵ2|ξ|2/2 and defining

Iϵ(x) :=

ˆ
Rn

ˆ
Rn

(2π)−nei(x−y)·ξe−ϵ2|ξ|2/2f(x)dxdξ.

Note that by dominated convergence, Iϵ(x) → (2π)−nf̂∧(−x) as ϵ → 0 for each x ∈ Rn. Using
Fubini and the formula (1.1), we find

Iϵ(x) =

ˆ
Rn

Åˆ
Rn

ei(x−y)·ξ(2π)−ne−ϵ2|ξ|2/2dξ

ã
f(x)dx

=

ˆ
Rn

(2π)−n/2ϵ−ne−|x−y|2/(2ϵ2)f(x)dx

= (ϕϵ ⋆ f)(x)
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where ϕϵ(x) = ϵ−nϕ(x/ϵ) and ϕ(x) = (2π)−n/2e−|x|2/2. Using the properties of mollifiers, we
conclude that for each x ∈ Rn

Iϵ(x) = ϕϵ ⋆ f(x) → f(x) as ϵ → 0.

Therefore (2π)−nf̂∧(−x) = f(x) as desired.

1.2 Extension to Lp

An important property of the Fourier transform is how it behaves with respect to the L2 inner
product.

Lemma 1.10 (Parseval/ Plancharel). Let f, g ∈ S(Rn), then

ˆ
Rn

f̂gdx =

ˆ
Rn

fĝdξ.

In particular we have ˆ
Rn

f̂ ¯̂gdξ = (2π)n
ˆ
Rn

fḡdx. (1.2)

Proof. Using Fubini one readily computes
ˆ
Rn

f̂(ξ)g(ξ)dξ =

ˆ
Rn

Åˆ
Rn

e−iξ·xf(x)dx

ã
g(ξ)dξ

=

ˆ
Rn

f(x)

Åˆ
Rn

e−iξ·xg(ξ)dξ

ã
dx

=

ˆ
Rn

f(x)ĝ(x)dx.

To see the second identity, we use properties of Fourier transforms to see ¯̂g(ξ) = ˆ̄g(−ξ) and therefore
(¯̂g)∧(x) = (2π)nḡ(x). This implies (1.2).

In particular these estimates give a natural extension of the Fourier transform to L2 that has
(upon suitable normalization) unitary properties.

Corollary 1.11. For each f ∈ S(Rn) one has

∥f̂∥2L2 = (2π)n∥f∥2L2 . (1.3)

In particular, the normalized Fourier transform ‹F = (2π)−n/2F extends to a unitary operator on
L2.

Proof. The bound ∥f̂∥2L2 = (2π)n∥f∥2L2 follows immediately from (1.2). To extend the operator to
L2 we use that S(Rn) is dense in L2(Rn). Fix f ∈ L2 and let {fn} ⊆ S(Rn) be such that fn → f
in L2. Then we have

∥f̂n − f̂m∥L2 = (2π)n/2∥fn − fm∥L2 .

Since the right-hand side is Cauchy, the left-hand side is Cauchy also, implying that there exists
f̂ ∈ L2 such that f̂n → f̂ in L2. Define Ff := f̂ . It is not hard to see that this definition does
not depend on the choice of approximating sequence. Moreover passing to the limit in (1.2) also
implies that

⟨‹Ff, ‹Fg⟩L2 = ⟨f, g⟩L2 ,
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hence ‹F = F/(2π)n is an isometry on L2. To see that it is in fact unitary, one needs to show that‹F is in fact surjective. To show this, let R = Ran(‹F) be the range of ‹F . Note that R is dense in L2

since it contains S(Rn) by Theorem 1.9. In fact being an isometry R must also be closed. Indeed,

let g ∈ R and let {fn} ⊆ L2 be such that gn = ‹Ffn → g then

∥gn − gm∥L2 = ∥fn − fm∥L2 .

Therefore since {gn} is Cauchy, so is {fn}. Let f be the L2 limit of {fn}, then by continuity of ‹F
we have g = ‹Ff , which implies that g ∈ R. It follows by density that R = L2 and therefore ‹F is
unitary.

More generally the Fourier transform can be extended continuously to Lp for p ∈ [1, 2]. To do
this we will interpolate between the easy bound ∥f̂∥L1 ≤ ∥f∥L∞ and the L2 estimate (1.3). To do
this we will require the Riesz Thorin interpolation theorem

Theorem 1.12 (Riesz/Thorin Interpolation). Suppose that T is a bounded linear operator from
Lp0 + Lp1 → Lq0 + Lq1 and that T boundedly maps Lp0 → Lq0 and Lp1 → Lq1

∥Tf∥Lq0 ≤ C0∥f∥Lp0 , ∥Tf∥Lq1 ≤ C1∥f∥Lp1 .

For p0, p1, q0, q1 ∈ [1,∞]. Then T boundedly maps Lpθ → Lqθ , where

1

pθ
= (1− θ)

1

p0
+ θ

1

p1
,

1

qθ
= (1− θ)

1

q0
+ θ

1

q1
, for all θ ∈ [0, 1]

and
∥Tf∥Lqθ ≤ C1−θ

0 Cθ
1∥f∥Lpθ .

The proof of this theorem can be proved using complex interpolation, namely by holomorphically
extending the parameters p, q to the complex plane (or a strip). A wonderful exposition and proof
of this can be found in the blog post by Terrance Tao here.

As an immediate application of this is the following

Theorem 1.13. Let f ∈ S(Rn), then for each p ∈ [1, 2] we have

∥f̂∥Lp′ ≲ ∥f∥Lp , (1.4)

where p′ is the Hölder conjugate of p, 1
p′ +

1
p = 1. Consequently F can be extended to a continuous

bounded linear operator from Lp to Lp′.

Proof. By interpolating between ∥f̂∥L2 ≲ ∥f∥L2 and ∥f̂∥L∞ ≤ ∥f∥L1 using Riesz/Thorin, we obtain
the desired bound from Lpθ to Lqθ , where

1

pθ
= (1− θ) +

θ

2
,

1

qθ
=

θ

2
.

It follows that pθ ∈ [1, 2] and qθ = p′. The extension to Lp follows by the usual Cauchy sequence
argument.

As it turns out, the Hausdorf/Young inequality is essentially sharp in terms of the characteri-
zation boundedness between Lp spaces, showing that any bound between Lp spaces must be of the
form (1.4) and that the Fourier transform cannot continuously extended to Lp for p > 2.
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Theorem 1.14. Suppose that for some p, q ∈ [1,∞] the following holds

∥f̂∥Lq ≲ ∥f∥Lp ,

for all f ∈ S(Rn). Then p ∈ [1, 2] and q = p′.

Proof. We begin by showing q = p′. This can be easily seen by scaling. Let f ∈ S(Rn), f ̸= 0
and for each λ > 0 define fλ(x) = f(x/λ). Then it follows (by property 3 of Proposition 1.5) that
f̂λ = λnf̂(λξ). Using change of variables we see that

∥fλ∥Lp = λn/p∥f∥Lp

and
∥f̂λ∥Lq = λnλ−n/q∥f∥Lq .

Substituting these into the desired inequality evaluated on fλ and collecting powers of λ gives

λ
n
Ä
1− 1

q
− 1

p

ä
∥f̂∥Lq ≲ ∥f∥Lp .

The only way this can hold for all λ > 0 is if q = p′.
Next to show that p ∈ [1, 2], we note that by the properties of Hölder exponents that it suffices

to show that p < p′. To do this, consider φ ∈ C∞
c (Rn) with suppφ ∈ B(0, 1/2) and define

φk(x) := e−iλx·(kei)φ(x− ke1),

where e1 is an arbitrary unit vector in Rn and k ∈ {1, . . . , n, . . .}. Note that by construction {φk}
all have disjoint support. Note by properties 1 and 2 of Proposition 1.5

φ̂k(ξ) = e−iξ·(ke1)φ̂(x− λke1).

Choose N > 1 arbitrary and define

f =

N∑
k=1

φk,

then using that φk are disjoint, we have

∥f∥Lp =

(
N∑
k=1

ˆ
|φk|pdx

)1/p

∼ N1/p.

The same property is not true for f̂ since φ̂ no longer has compact support. Instead, we split
f̂ = f̂1 + f̂2 where

f̂1 =

N∑
k=1

φ̂k1B(λke1,λ/2), f2 =

N∑
k=1

φ̂k1Bc(λke1,λ/2)

Since {φ̂k1B(λke1,λ/2)} now have disjoint support, we have ∥f̂1∥Lq ∼ N1/q. On the other hand

∥f̂2∥Lq ≤
N∑
k=1

Çˆ
Bc(λke1,λ/2)

|φ̂k|qdξ
å1/q

= N∥1|ξ|>λ/2φ̂∥Lq

Since φ̂ is in S(Rn), we can choose λ big enough so that

N∥1|ξ|>λ/2φ̂∥Lq ≤ 1

2
N1/q.
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Therefore for such λ
∥f̂∥Lq ≥ ∥f̂1∥Lq − ∥f̂2∥Lq ≳ N1/q.

It follows that
∥f̂∥Lq ≲ ∥f∥Lp ⇒ N1/q ≲ N1/p

Since this holds for all N > 1, we must have 1/q ≤ 1/p, or p ≤ p′.

1.3 Fourier multipliers

The Fourier transform can be a very convenient way to define certain classes of operators that
behave, in a sense, like functions of differential operators. Recall that the Fourier transform has
the property that ”∇f(ξ) = iξf̂(ξ).

Namely the it turns differentiation in to multiplication by iξ. Naturally one could consider multi-
plication of some more general function of iξ.

Definition 1.15. Let m ∈ L1
loc(Rn), called a Fourier multiplier. Define the operator m(∇) for

each f ∈ S(Rn) by ◊�m(∇)f = m(iξ)f̂(ξ).

In general Fourier multipliers are not bounded operators if m is not bounded. However, when
m is bounded, we have the following

Lemma 1.16. Let m ∈ L∞, then m(∇) extends to a bounded linear operator on L2 with

∥m(∇)f∥L2 ≤ ∥m∥L∞∥f∥L2 .

Proof. By Parseval, we have

∥m(∇)f∥L2 = (2π)n/2∥m(iξ)f̂∥L2

≤ (2π)n/2∥m∥L∞∥f̂∥L2

= ∥m∥L∞∥f∥L2 .

Remark 1.17. The Lp, p ̸= 2 version of this type of estimate is much harder and will be the focus
of later sections.

1.4 Characterization of Sobolev spaces

Notationally, we will denote the operator |∇| by the operator with Fourier multiplier |ξ|, or more
generally |∇|s with s ∈ R (positive or negative) by the operator with Fourier multiplier |ξ|s.
Sometimes the notation Λ = |∇| is used instead and the associated operator is called the Zygmund
operator.

The Fourier transform can be used to define a convenient norm for L2 based Sobolev spaces Hs.
Indeed it is easy to see from the properties of Fourier transform that for each k ∈ N and f ∈ S(Rn)

∥f∥Hk ≈ ∥⟨∇⟩kf∥L2 ,

where ⟨∇⟩ is the operator with Fourier multiplier ⟨ξ⟩ =
√
1 + |ξ|2 (some times called the Japanese

bracket). In this way, we see that the Hk norm on Rn is no other than a weighted L2 norm on the
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Fourier side. This allows to easily extend this norm to arbitrary s ∈ R in L2. In what follows, we
will denote

∥f∥Hs = ∥⟨∇⟩sf∥L2

for the Hs Sobolev norm and
∥f∥Ḣs = ∥|∇|sf∥L2

for the corresponding “homogeneous” norm only depending on the highest derivative (note the dot
over the H). The associated inner product is

⟨f, g⟩Hs =

ˆ
Rn

(1 + |ξ|2)sf̂(ξ)ĝ(ξ)dξ.

The associated space Hs when s ≥ 0 is then defined to be the the closure of S(Rn) with respect to
the Hs norm, or using the extension of the Fourier transform to L2 (again for s ≥ 0) we have

Hs :=

ß
f ∈ L2(Rn) :

ˆ
Rn

(1 + |ξ|2)s|f̂(ξ)|2dξ < ∞
™

When s < 0, however, Hs instead consists in a sense of a much large class of “distributions”,
which we will discuss in the next section.

Remark 1.18. The choice of the norm for the Hs spaces when s > 0 can equivalently be taken to
be

∥f∥Hs ≈ ∥(1 + |ξ|s)f̂∥L2

as is done (for instance) in Evan’s. However such a choice does not work as well for s < 0 due to
the fact that (1 + |ξ|s) and (1+ |ξ|2)s/2 have very different behavior near ξ = 0. For the case s < 0
the proper choice is really (1 + |ξ|2)s/2.

1.5 Tempered distributions and negative Sobolev spaces

In order to deal with the Fourier transform on functions that are not L2 (or any Lp for that matter)
it is useful to introduce a space of “distributions” that play well with the Fourier transform

Definition 1.19. We define the space of tempered distributions S ′(Rn) to be the topological dual
space to S(Rn). Specifically, this is the space of continuous linear functionals u on S(Rn), whose
action (or pairing with) on ϕ ∈ S)(Rn) is denoted by

u(ϕ) = ⟨u, ϕ⟩.

Here, continuity of the functional u ∈ S ′(Rn) is in the sense that there exists an M ≥ 0 such that

|⟨u, ϕ⟩| ≤
∑

|α|≤M

∑
β≤M

sup
x∈Rn

|xαDβϕ|.

When u is just a locally integrable function, with growth bounded by some power of |x| at
infinity, then it is clear that u is also a tempered distribution with the pairing simply given by

⟨u, ϕ⟩ =
ˆ
Rn

uϕdx.
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Remark 1.20. As mentioned, the space of tempered distributions contains the space of all locally
integrable functions. But also contains much more. Indeed it also contains objects like the delta
function δx, for which ⟨δx, ϕ⟩ = ϕ(x) as well as “negative order” objects like derivatives of delta
functions Dαδx, where ⟨Dαδx, ϕ⟩ = (−1)|α|Dαϕ(x). The terminology “tempered” comes from the
fact that the rapidly decreasing property of S ′(Rn) imposes a growth restriction on a tempered
distribution. Namely u ∈ S ′(Rn) cannot grow faster than any power of |x|. Generally, a function
is in S′(Rn) if it is locally integrable or some finite number of derivatives of a locally integrable
function.

Remark 1.21. Note that any tempered distribution u can be multiplied by a function ϕ ∈ S(Rn),
yielding ϕu ∈ S ′(Rn) via the relation

⟨ϕu, φ⟩ = ⟨u, ϕφ⟩

for every φ ∈ S(Rn). Such a relation uniquely determines the tempered distribution ϕu.

The Fourier transform can naturally be extended from S(Rn) to S′(Rn) by duality.

Definition 1.22. Let u ∈ S ′(Rn), then the Fourier transform û ∈ S ′(Rn) is defined via the
generalized Parseval relation

⟨û, ϕ⟩ = ⟨u, ϕ̂⟩. (1.5)

Remark 1.23. Note that the Fourier transform is uniquely defined as a tempered distribution by
the relation (1.5) since the Fourier transform is an isomorphism of S(Rn). Moreover it is easy to see
that continuity of the Fourier transform on S(Rn) implies continuity of its extension to the much
weaker space S ′(Rn)

With this definition in place, we can define the Sobolev space Hs for s < 0 as a space of
distributions

Hs :=

ß
f ∈ S ′(Rn) :

ˆ
Rn

(1 + |ξ|2)s|f̂(ξ)|2dξ < ∞
™
.

Namely, Hs is the space of tempered distributions u who’s Fourier transform û is a locally integrable
functions such that (1 + |ξ|2)s/2û(ξ) ∈ L2. In general we will rarely be considering distributions
that belong only to S′(Rn) but not to some sufficiently negative Sobolev space.

Example 1.24. The negative Sobolev spaces actually contain a large class of important distribu-
tions. In particular one can show that the delta function δx belongs to Hs for all s < −n/2. While
Dαδx belongs to Hs for all s < −n/2− |α|. This is left as an exercise.

It is also possible to define the convolution of a tempered distribution and a Schwartz function
(in fact one can often convolve two distributions).

Definition 1.25. Let ϕ, φ ∈ S(Rn) and u ∈ S ′(Rn), then the convolution u ⋆ϕ ∈ S ′(Rn) is defined
by

⟨u ⋆ ϕ, φ⟩ = ⟨u, ϕ ⋆ φ⟩.

This allows us to extend the useful relation between convolutions and multiplication to distri-
butions.

Lemma 1.26. Let u ∈ S ′(Rn) and ϕ ∈ S(Rn), the following holds’u ⋆ ϕ = ûϕ̂,

where the right-hand side is interpreted as the multiplication between ϕ̂ ∈ S(Rn) and û ∈ S ′(Rn).
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2 Singular integrals and convolutions

Averaging is very important concept in analysis. Indeed, some form of averaging is usually used to
approximate a function by a simpler one. A classical example of this is the mollification operation
fϵ = ηϵ ⋆ f obtained by convolving f with ηϵ(x) = ϵ−nη(x/ϵ) > 0, where η > 0 is a smooth
symmetric compactly supported function with

´
η = 1.

In this section we will study properties of convolution operations where the function η used in
the convolution operator is not so nice. Indeed by the properties of Fourier transform discussed
above every integrable Fourier multiplier m gives rise to a convolution operator on S(Rn)

m(∇)f = ˇm(i·) ⋆ f = F−1(m(i·)f̂),

where F−1f(x) = f̌(x) = (2π)−nf̂(−x) denotes the inverse Fourier transform and we have inter-
preted m̌ in the sense of tempered distributions. There are certain relatively simple cases when
convolution operators are bounded in Lp spaces. Recall Young’s inequality

Theorem 2.1 (Young’s Inequality). Assume f ∈ Lp and g ∈ Lq, then f ⋆ g satisfies

∥f ⋆ g∥Lr ≤ ∥f∥Lq∥g∥Lp , provided 1 +
1

r
=

1

p
+

1

q
.

However, as we will see, there are many interesting cases where the function one is convolving
with is not globally integrable (or in some cases even locally) and therefore Young’s inequality
doesn’t apply. Such integrals are usually referred to as singular.

2.1 Riesz Potential

As a starting point we will consider the following function

Kα(x) = cn|x|α−n, α ∈ (0, n),

and the constant cα,n is given by

cα,n = πn/22α
Γ(α/2)

Γ((n− α)/2)
.

We are interested in properties of the convolution operator defined for each f ∈ S(Rn) by

Iα[f ](x) := Kα ⋆ f(x) =

ˆ
Rn

Kα(y)f(x− y)dy.

The above integral is indeed well defined since α ∈ (0, n) and therefore Kα is locally integrable,
meaning that its convolution with any rapidly decreasing function f ∈ S(Rn) is finite. However,
Kα is not globally integrable and therefore when taking its Fourier transform it must be treated as
a tempered distribution and, in general may not produce a function which is even locally integrable.

Note that when α = 2, Kα(x) is exactly the fundamental solution of the Laplacian, implying
that in this case I2 is just the inverse Laplacian

I2[f ] = (−∆)−1f.

In fact we will see that Iα = (−∆)−α/2f , where the right-hand sides is interpreted as the
operator with Fourier multiplier |ξ|−α/2.
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Proposition 2.2. The Fourier transform of Kα is given by”Kα(ξ) = |ξ|−α,

where the Fourier transform is interpreted in the sense of tempered distributions.

Proof. We must work with distributions and therefore work with a pairing with an element ϕ ∈
S(Rn). Before we start, we will use the following useful representation of the function |x|n−α.
Indeed, recall the definition of the Gamma function

Γ
(n− α

2

)
=

ˆ
R+

e−ss(n−α)/2ds

s
.

Upon changing variables to s = |x|2t for a fixed x ∈ Rn, we see that

Γ
(n− α

2

)
|x|α−n =

ˆ
R+

e−t|x|2t(n−α)/2dt

t
.

It follows that as distribution we have〈
Γ
(
n−α
2

)÷|x|α−n, ϕ
〉
=
¨
Γ
(
n−α
2

)
|x|α−n, ϕ̂

∂
=

ˆ
Rn

Çˆ
R+

e−t|x|2t(n−α)/2dt

t

åÅˆ
Rn

e−ix·ξϕ(ξ)dξ

ã
dx

=

ˆ
Rn

ˆ
R+

Åˆ
Rn

e−t|x|2e−ix·ξdξ

ã
t(n−α)/2dt

t
ϕ(ξ)dξ

= ⟨Gα, ϕ⟩,

where in the second to last line we used Fubini, and we defined

Gα(ξ) :=

ˆ
R+

Åˆ
Rn

e−t|x|2e−ix·ξdξ

ã
t(n−α)/2dt

t
.

Using the Fourier transform of a Gaussian (1.1), we find ÷e−t|x|2(ξ) = πn/2t−n/2e−|ξ|2/4t. Therefore

Gα(ξ) = πn/2

ˆ
R+

t−α/2e−|ξ|2/4tdt

t

= πn/22α|ξ|−α

ˆ
R+

uα/2e−udu

u

= πn/22α|ξ|−αΓ
(
α
2

)
,

where in the second line above we used the change of variables u = |ξ|2/4t. It follows that in the
sense of distributions we have

Γ
(
n−α
2

)÷|x|α−n = πn/22α|ξ|−αΓ
(
α
2

)
,

which is equivalent to ”Kα(ξ) = |ξ|−α.

This result implies that the operator Iα is indeed given a Fourier multiplier operator

Iα[f ] = |∇|−αf = (−∆)−α/2f.
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2.2 Hardy-Littlewood-Sobolev and the maximal function

Now we consider a fundamental inequality concerning Riesz potentials (or more general convolutions
with functions of the type |x|−α, analogous to Young’s inequality.

Theorem 2.3 (Hardy-Littlewood-Sobolev). Let α ∈ (0, n) and f ∈ S(Rn), then |x|−α ⋆ f satisfies

∥|x|−α ⋆ f∥Lr ≲n,p ∥f∥Lp provided 1 +
1

r
=

1

p
+

α

n
, p, r ∈ (1,∞).

The proof of this theorem will involve studying a very important function known as the Hardy-
Littlewood maximal function

Mf(x) = sup
r>0

−
ˆ
Br(x)

|f(y)|dy, (2.1)

where Br(x) is the ball of radius r centered at x and −́
B |f(y)|dy = 1

|B|
´
B |f(y)|dy is the average of

|f | over the ball B. Hence, the maximal function describes the largest possible value that averages
of f can take over ball centered around a certain point. Apriori it is not clear that Mf is even
finite at every point. Indeed, if f is only Lp, then if x is not a Lebesgue point, the value of Mf(x)
may be infinite at that point. Nonetheless, the following fundamental theorem due to Hardy and
Littlewood state properties of Mf and gives sharp conditions on its boundedness as an operator
on Lp.

Theorem 2.4 (Hardy-Littlewood Maximal Inequality). The maximal function Mf satisfies

(a) For f ∈ Lp, p ∈ (1,∞]
∥Mf∥Lp ≲p,n ∥f∥Lp (2.2)

(b) For f ∈ L1

|{Mf > λ}| ≤ Cn

λ
∥f∥L1 . (2.3)

Remark 2.5. Theorem 2.4 implies that Mf is almost surely finite for f ∈ Lp for p ∈ [1,∞],
however M : Lp → Lp is only a bounded operator if p > 1. The bound (2.3) is weaker than
boundedness on L1. It, for instance, allows for Mf to be 1/|x|n which is not integrable. Such an
estimate is called a weak type estimate as it maps L1 to a space L1,∞ known as weak L1. Indeed
estimate (2.2) is false on L1.

To see this, choose ϕ ∈ C∞
c with suppϕ ⊆ B1(0). Note that if |x| > 2, then B1/2(0) ⊆ B2|x|(x)

and therefore for |x| > 2

Mϕ(x) ≥ −
ˆ
B2|x|(x)

ϕ(y)dy =
1

2n|x|n

ˆ
B1/2(0)

ϕ(y)dy ≳
1

|x|n

which is not in L1.

In order the prove this theorem, we will use certain covering Lemma due to Vitali.

Lemma 2.6 (Vitali). Let B1, . . . BN be a finite collection of balls in Rn. Then there is a sub-
collection Bn1 , . . . Bnk

of disjoint balls such that⋃
i

Bi ⊆
⋃
j

3Bnj ,

where 3Bnk
denotes the ball Bnk

scaled up by a factor of 3.
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Proof. If the collection of balls is empty, then the theorem is obviously true. Now we proceed
with the following algorithm. Order the balls by radius arbitrarily breaking ties and let Bn1 be
the ball with the largest radius and remove it from the list. Next discard all the balls which have
a non-empty intersection with Bn1 . If there are any balls left, let Bn2 be the largest ball of the
remaining balls and remove it from the list. If there are no balls left, then stop. Repeat this
procedure discarding all remaining balls which have an intersection with Bn2 and choosing the
largest remaining ball.

This procedure removes a least one ball from the ordered list at each step and therefore must
terminate after finitely many iterations. The resulting disjoint collection of balls Bn1 , Bn2 , . . . , Bnk

have the property that any ball Bi not in the disjoint collection must intersect a larger ball Bnj in
the disjoint collection. By the triangle inequality (draw a picture) we see that Bi ⊆ 3Bnj . Therefore
the proof is complete.

Now we are equipped to prove the Maximal inequality.

Proof of maximal inequality Theorem 2.4. Step 1: We begin by proving the weak type L1 estimate
(2.3). To do this, fix λ > 0 and consider the set {Mf > λ}. Let K ⊆ {Mf > λ} be an arbitrary
compact set. For each x ∈ K we have Mf(x) > λ and therefore by the definition (2.1) of the
maximal function there exists an rx such that

ˆ
Brx (x)

|f(y)|dy > λ|Brx(x)|. (2.4)

Moreover {Brk(x)} is clearly an open covering of K and therefore there exists a finite sub-cover
B1, . . . , BN of K. By Vitali’s covering Lemma, there is a disjoint sub collection Bn1 , . . . , Bnk

such
that

|K| ≤
∣∣∣∣∣⋃

i

Bi

∣∣∣∣∣ ≤ 3n
∑
j

|Bnj |.

It follows by (2.4) that

|K| ≤ 3n

λ

∑
j

ˆ
Bnj

|f(y)|dy ≤ 3n

λ
∥f∥L1 .

Since this holds for any compact K ⊆ {Mf > λ}, we conclude that it also holds for {Mf > λ}
itself by the inner regularity of Lebesgue measure.

Step 2: Next we prove (2.2) from (2.3). To do this, we first fix λ > 0 and denote

g = 1{|f |>λ/2}|f |.

Note that

Mf(x) = sup
r>0

−
ˆ
Br(x)

(1{|f |>λ/2} + 1{|f |≤λ/2})|f(y)|dy ≤ Mg(x) + λ/2

Therefore we have {Mf > λ} ⊆ {Mg > λ/2}. Applying the maximal inequality (2.3) to Mg gives

|{Mf > λ}| ≤ |{Mg > λ/2}| ≤ 2C

λ

ˆ
Rn

1{|f |>λ/2}(y)|f(y)|dy.

The layer cake formula then implies that for p > 1

∥Mf∥pLp = p

ˆ ∞

0
λp−1|{Mf > λ}|dλ,
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whereby using the above maximal function bound and applying Fubini gives

∥Mf∥pLp ≲
ˆ ∞

0

ˆ
Rn

λp−2
1|f |>λ/2|f(y)|dy

=

ˆ
Rn

Çˆ 2|f(y)|

0
λp−2dλ

å
|f(y)|dy

=
2p−1

p− 1

ˆ
Rn

|f(y)|pdy.

This proves the result for p ∈ (1,∞). The case p = ∞ is obvious.

Now we are ready to prove the Hardy-Littlewood-Sobolev (HLS) inequality Theorem 2.3.

Proof of Hardy-Littlewood-Sobolev Theorem 2.3. To begin we see that for each x

|(f ⋆ |x|−α)(x)| ≤
ˆ
Rn

|y|−α|f(x− y)|dy =

ˆ
Rn

|y|−α|f(x+ y)|dy.

Let 2Z = {2j : j ∈ Z} be the set of dyadic (powers of 2) integers. We divy up the integrand on the
right-hand side over annuli of the form {2j ≤ |y| ≤ 2j+1} and estimate

|(f ⋆ |x|−α)(x)| ≤
∑
s∈2Z

ˆ
s≤|y|≤2s

|y|−α|f(x+ y)|dy

≤
∑
s∈2Z

s−α

ˆ
s≤|y|≤2s

|f(x+ y)|dy.

Note that by Hölder’s inequality

s−α

ˆ
s≤|y|≤2s

|f(x+ y)|dy ≲ sn/p
′−α∥f∥Lp = s−n/r∥f∥Lp ,

however,
∑

s∈2Z s
−n/r is not generally summable near s = 0 since you get a growing geometric

series. To remedy this, we chop up the sum into regions where s ≤ R and s ≥ R for some cut-off
R (to be chosen later). When s ≥ R we simply use the above bound. When s ≤ R we will replace
the integral with it’s average to get and extra factor of sn and bound by the maximal function

s−α

ˆ
s≤|y|≤2s

|f(x+ y)|dy ≤ sn−α−
ˆ
|y|≤2s

|f(x+ y)|dy ≤ sn−αMf(x).

Since α ∈ (0, n), the series
∑

s∈2Z,s≤R sn−α is summable as a geometric series. Putting this together
gives∑

s∈2Z
s−α

ˆ
s≤|y|≤2s

|f(x+ y)|dy =
∑
s∈2Z
s≤R

s−α

ˆ
s≤|y|≤2s

|f(x+ y)|dy +
∑
s∈2Z
s≥R

s−α

ˆ
s≤|y|≤2s

|f(x+ y)|dy

≤

(∑
s∈2Z
s≤R

sn−α

)
Mf(x) +

(∑
s∈2Z
s≥R

s−n/r

)
∥f∥Lp

≲ Rn−αMf(x) +R−n/r∥f∥Lp ,
(2.5)

where in the last inequality we used the property that any convergent geometric series can be
controlled by the largest term in the series.
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Now we optimize in the value of R. We do this by setting Rn−αMf(x) = R−n/r∥f∥Lp and
solving for R, giving

R =

Å ∥f∥Lp

Mf(x)

ãp/n

,

assigning the value +∞ when Mf(x) = 0. Substituting this into (2.5) gives

|f ⋆ |x|−α(x)| ≤ |Mf(x)|p/r∥f∥1−p/r
Lp .

It now follows from the maximal inequality (2.2) that since p > 1

∥f ⋆ |x|−α∥Lr ≤ ∥Mf∥p/rLp ∥f∥1−p/r
Lp

≲ ∥f∥Lp .

2.3 Sobolev embeddings and interpolation

The Hardy-Littlewood-Sobolev inequality can be used to prove most of the Lp based Sobolev
embeddings on Rn and naturally extends them to the setting of fractional Sobolev spaces.

Theorem 2.7 (Sobolev Embedding). Let s > 0 and p ∈ (1,∞), then for every f ∈ S(Rn)

∥f∥Lr ≲ ∥|∇|sf∥Lp , if
1

r
=

1

p
− s

n
, r ∈ (1,∞)

Proof. To prove this we write for f ∈ S(Rn)

∥f∥Lr = sup
g∈Lr′

∥g∥
Lr′=1

⟨g, f⟩ = sup
g∈S(Rn)
∥g∥

Lr′ =1

⟨g, f⟩ = sup
g∈S(Rn)
∥g∥

Lr′ =1

⟨ĝ, f̂⟩ = sup
g∈S(Rn)
∥g∥

Lr′ =1

⟨|ξ|−sĝ, |ξ|sf̂⟩

where in the second equality we used that S(Rn) is dense in Lr′ . Ideally we would like to apply
Plancharel again to obtain ⟨|∇|−sg, |∇|sf⟩, however neither |ξ|−sĝ nor |ξ|sf̂ are in S′(Rn) due to
the singularity at 0 (we need one to be in S(Rn) to treat the other as in S ′(Rn). To remedy this
we consider the modified set

S0(Rn) :=
¶
f ∈ S(Rn) : f̂ vanishes in a neighborhood of 0

©
.

We claim that this set is dense in Lr′ . Indeed to see this we simply need to show S0(Rn) is dense
in S(Rn) in the Lr′ metric. For each g ∈ S(Rn) denote

ĝϵ(ξ) = ĝ(ξ)(1− φ(ξ/ϵ)),

where φ ∈ C∞
c , φ ≥ 0, φ = 1 on B1(0) and vanishes outside of B2(0). It follows that

ĝ(ξ)− ĝϵ(ξ) = ĝ(ξ)φ(ξ/ϵ)

Since F−1φ(x/ϵ) = ϵnφ̌(ϵx), we see that so that g − gϵ = ϵng ⋆ (φ̌(·ϵ)). Therefore by Young’s
inequality

∥g − gϵ∥Lr′ ≤ ϵn∥g∥L1∥φ̌(·ϵ)∥Lr′ = ϵn(1−1/r′)∥g∥L1∥φ̌∥Lr′ .

Therefore ∥g − gϵ∥Lr′ → 0 as ϵ → 0 since r′ > 1.
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Using just proven density of S0(Rn), we replace S(Rn) with S0(Rn) so that |ξ|−sĝ belongs to
S(Rn). It follows that

∥f∥Lr = sup
g∈S0(Rn)
∥g∥

Lr′ =1

⟨|ξ|−sĝ, |ξ|sf̂⟩ = sup
g∈S0(Rn)
∥g∥

Lr′ =1

⟨|∇|−sg, |∇|sf⟩ ≤ sup
g∈S0(Rn)
∥g∥

Lr′ =1

∥|∇|−sg∥Lp′∥|∇|sf∥Lp .

We now apply the HLS inequality to obtain

∥|∇|−sg∥Lp′ ≈ ∥|x|s−n ⋆ g∥Lp′ ≲ ∥g∥Lr′

where

1 +
1

p′
=

1

r′
+

n− s

n
⇒ 1

r
=

1

p
− s

n
.

Using this, one can also prove the following general interpolation inequality.

Theorem 2.8 (Gagliardo-Nirenberg Interpolation inequality). Let f ∈ S(Rn) then for each p0, p1 ∈
(1,∞) and s > 0, we have the following interpolation inequality for each θ ∈ [0, 1]

∥f∥Lpθ ≤ ∥f∥1−θ
Lp0 ∥|∇|sf∥θLp1 ,

where
1

pθ
= (1− θ)

1

p0
+ θ

Å
1

p1
− s

n

ã
.

Proof. Left as an exercise.

Remark 2.9. In the above Sobolev inequalities, we don’t exactly recover the classical Sobolev
inequalities for integer values of s. This is because of the innate difference between the operator
|∇| and the gradient operator ∇. While the behave similarly on the Fourier side. As operators,
they behave quite differently as |∇| is non-local and ∇ is local, meaning that |∇|f(x) depends on
all values of the function x, while ∇f(x) depends on only value of f in small neighborhood of the
point evaluated. We will rectify this difference in the next section.

2.4 Riesz transform

As discussed in the previous section, we would like understand how to relate derivatives operators
|∇|f which are inherently non-local to ∇f , which is local to recover the classical Sobolev embedding
theorems from the ones proven above. To do this, we note that the Fourier multiplier for ∂j is given
by iξ, while the Fourier multiplier for |∇| is given by |ξ|. At the level of the multiplier, we we can
relate the two via

|ξ| =
∑
j

−iξj
|ξ|

iξj =
∑
j

mj(ξ)iξj ,

where we have defined

mj(ξ) := −i
ξj
|ξ|

,

called the Riesz multiplier (not to be confused with Riesz potential). The corresponding operator
Rj defined for each f ∈ S(Rn) and j ∈ {1, . . . , n} by‘Rjf = mj(ξ)f
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is called the Riesz transform. The vector of Riesz transforms we will denote by R = (R1, . . . , Rn).
It follows that we can write

|∇| = R · ∇ =
∑
j

Rj∂xj .

Additionally, it is easy to see at the level of the multipliers that we also have ∇ = R|∇|. Note
that the Riesz multiplier mj is in L∞ and therefore Lemma 1.16 implies that Rj is bounded from
L2 → L2. This immediately implies for f ∈ S(Rn)

∥|∇|f∥L2 ≈ ∥∇f∥L2 .

However, as mentioned earlier, Lemma 1.16 does not apply generally in Lp for p ̸= 2. The main
issue being that the Fourier transform loses its isometric structure on Lp and, in light of Theorem
1.14, the lack of boundedness of the Fourier transform between Lp spaces.

One of the main goals of this section will be to show that the Riesz transform, along with a
large class of similar Fourier multipliers, is bounded from Lp to Lp for p ∈ (0,∞) (see the Mikhlin
multiplier Theorem ?? below).

Naturally, the Riesz transform can be written as a convolution with a distribution using the
properties of the Fourier transform

Rjf = F−1(mj f̂) = m̌j ⋆ f, f ∈ S(Rn),

where m̌j ∈ S ′(Rn) denotes the inverse Fourier transform of mj . In fact, using the explicit compu-
tation for the Riesz potential given in Proposition 2.2 we can easily compute m̌j .

Lemma 2.10. Let mj be the Riesz multiplier, then the following formula holds in the sense of
tempered distributions

K(x) := m̌j(x) = p.v.
xj

cn|x|n+1
,

where cn = π(n+1)/2

Γ((n+1)/2) = πωn−1, where ωn−1 is the volume of the n− 1 dimensional Euclidean unit
ball, and p.v. denotes the principle value of the distribution, defined as the limit

⟨K,ϕ⟩ = lim
ϵ→0

1

c1,n
⟨xj |x|−n−1

1|x|>ϵ, ϕ⟩.

Proof. Recall from Proposition 2.2 that F−1|ξ|−1 = 1
c1,n

|x|1−n. Therefore, since −iξj is the Fourier

multiplier of −∂xj , we see that in the sense of distributions

m̌j =
−∂xj |x|1−n

c1,n
.

Computing this derivative away from zero (by choosing test functions supported in a neighborhood
away from zero) gives

m̌j(x) = cn
xj

|x|n+1
on Rn\{0},

where we used that Γ(1/2) =
√
π and (n−1)

2 Γ(n−1
2 ) = Γ(n+1

2 ).
To see that the principle value exists, we note that

xj

|x|n+1 is an odd function and therefore

ˆ
Bϵ(0)c

xj
|x|n+1

dx = 0.

17



It follows that for any f ∈ S(Rn)

ˆ
Bϵ(0)c

xj
|x|n+1

f(x)dx =

ˆ
Bϵ(0)c

xj
|x|n+1

(f(x)− f(0))dx.

Since we can bound |f(x)− f(0)| ≤ |x|∥Df∥L∞ , we see that∣∣∣∣ xj
|x|n+1

(f(x)− f(0))

∣∣∣∣ ≲ |x|n−1

which is integrable near zero. Therefore, the limit as ϵ → 0 exists by dominated convergence (the
correct proof of this requires splitting the integral into |x| ≤ 1 and |x| ≥ 1 and using that f is
rapidly decreasing).

Therefore we see that the Riesz transform is defined as a convolution with the function
xj

|x|n+1

interpreted in the principle value sense described in . Notably the function
xj

|x|n+1 ≤ 1
|x|n is not even

locally absolutely integrable near 0 (although it is conditionally integrable as we saw above). This
means that the Hardy/Littlewood/Sobolev inequality Theorem 2.3 doesn’t apply in estimating the
Riesz transform Rj since α = n is the boundary case. Nonetheless, such integrals can still be
estimated.

2.5 The Calderón-Zygmund Theorem

In what follows, we consider a general class of kernels that mimic the properties we saw for the
Riesz transform, these will be called the class of Calderón Zygmund potentials

Definition 2.11 (Calderón Zygmund potentials). We say a functionK ∈ C1(Rn\{0}) is a Calderón
Zygmund potential if the following properties hold:

1. |K(x)| ≲ 1
|x|n

2. |∇K(x)| ≲ 1
|x|n+1

3. For each 0 < R1 < R2 < ∞, ˆ
R1≤|x|≤R2

K(x)dx = 0.

Remark 2.12. It is easy to see that the kernel xj/|x|n+1 associated to the Riesz transform is a
Calderón Zygmund potential.

It is important to note that, following the exact same proof as in Lemma 2.10, properties 1 and
2 above imply that the convolution of K with f ∈ S(Rn) exists in the principle values sense

K ⋆ f(x) := p.v.

ˆ
Rn

K(y)f(x− y)dy = lim
ϵ→0

ˆ
Rn

1|y|>ϵK(y)f(x− y)dy.

Property 3 is a regularity condition, that is crucial for estimating the convolution. Typically, the
regularity condition 3 is replaced by the much weaker smoothness condition (sometimes called
Hörmander’s condition)

sup
y ̸=0

ˆ
|x|>2|y|

|K(x− y)−K(x)|dx < ∞, (2.6)

whose formulation will actually be more useful later.
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Lemma 2.13. The smoothness condition (2.6) follows from property 3.

Proof. First note that property 3 implies

|K(x− y)−K(x)| ≤ |y|
ˆ 1

0
|∇K(x− sy)|ds ≲ |y|

ˆ 1

0

1

|x− sy|n+1
ds ≲

|y|
(|x| − |y|)n+1

Therefore, when |x| > 2|y|, we have

|K(x− y)−K(x)| ≲ |y|
|x|n+1

,

and so ˆ
|x|>2|y|

|K(x− y)−K(x)|dx ≲
ˆ
|x|>2|y|

|y|
|x|n+1

dx ≲ |y| 1
|y|

= 1

The main theorem of this section is the following

Theorem 2.14. Let K be a Calderón Zygmund potential and let K ⋆ f be the principle value
convolution with f ∈ S(Rn). Then the following estimates hold:

1. for every λ > 0

|{|K ⋆ f | > λ}| ≲ ∥f∥L1

λ
(2.7)

2. for every p ∈ (1,∞),
∥K ⋆ f∥Lp ≲ ∥f∥Lp .

Moreover K ⋆ f can be extended to a bounded linear operator from Lp → Lp if p ∈ (1,∞).

The proof of this theorem will be broken up into a few steps. Our first step in the proof will be
to prove an L2 → L2 bound. After that, we will use this bound to prove the weak type estimate
(2.7). This estimate is the most technical and requires a very special decomposition of functions,
called the Calderón-Zygmund decomposition (see section 2.5.2). Finally, as in the our proof of the
maximal function bound (2.2), we will use this weak type estimate to prove the strong type bound.

2.5.1 L2 bound

Being a convolution, it is useful to see what the associated Fourier multiplier looks like. If we are
in any sense similar to the Riesz transform, we should expect that the multiplier is a bounded
function. If this is the case we know from Lemma 1.16 that K ⋆ f is bounded in the L2 norm.

Lemma 2.15. Let K be a Calderón Zygmund function, then K̂ ∈ L∞.

Proof. We consider the Fourier transform K̂ as a tempered distribution. Denote

K̂ϵ(ξ) =

ˆ
ϵ<|y|<ϵ−1

K(y)e−iξ·ydy.

Then K̂ = limϵ→0 K̂ϵ in the sense of distributions, since for each ϕ ∈ S(Rn)

⟨K̂, ϕ⟩ = ⟨K, ϕ̂⟩ = lim
ϵ→0

⟨K1ϵ<|y|<ϵ−1 , ϕ̂⟩ = lim
ϵ→0

⟨K̂ϵ, ϕ⟩.
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To show that K̂ ∈ L∞ it suffices to show that

⟨K̂, ϕ⟩ ≤ ∥ϕ∥L1

since this implies (by density of S(Rn) in L1) that K̂ belongs to L∞. Hence, we simply need to
show that

sup
ϵ>0

∥K̂ϵ∥L∞ < ∞.

To see this, we divy up the integral over dyadic shells as we did in the proof of the Hardy-Litlewood-
Sobolev inequality.

K̂ϵ(ξ) =
∑
r∈2Z

ϵ≤r≤ϵ−1

ˆ
r<|y|<2r

K(y)eiξ·xdx. (2.8)

Each term in the sum can be estimated differently depending on whether r ≤ R or r ≥ R, for some
R to be chosen. When r ≤ R, we use the cancellation property to estimate∣∣∣∣∣

ˆ
r<|y|<2r

K(y)eiξ·xdx

∣∣∣∣∣ =
∣∣∣∣∣
ˆ
r<|y|<2r

K(y)(eiξ·x − 1)dx

∣∣∣∣∣ ≲ r|ξ|
ˆ
r≤|x|≤2r

|K(x)|dx

≲ r|ξ|
ˆ
r≤|x|≤2r

1

|x|n
dx ≲ r|ξ|rnr−n = r|ξ|.

When r ≥ R we write eiξ·x as iξ
|ξ|2 · ∇xe

iξ·x and integrate by parts to obtain∣∣∣∣∣
ˆ
r<|y|<2r

K(y)eiξ·xdx

∣∣∣∣∣ = |ξ|−2

∣∣∣∣∣
ˆ
r<|y|<2r

K(y)ξ · ∇eiξ·xdx

∣∣∣∣∣
≲ |ξ|−2

∣∣∣∣∣
ˆ
r<|y|<2r

ξ · ∇K(y)eiξ·xdx

∣∣∣∣∣+ |ξ|−2

∣∣∣∣∣
ˆ
∂{r<|y|<2r}

ξ · n(y)K(y)eiξ·xdS(y)

∣∣∣∣∣
≲ |ξ|−1

Ç∣∣∣∣∣ˆr<|y|<2r
|x|−n−1dx

∣∣∣∣∣+
∣∣∣∣∣
ˆ
∂{r<|y|<2r}

|x|−ndS(y)

∣∣∣∣∣
å

≲ |ξ|−1
(
r−n−1rn + r−nrn−1

)
≲

1

|ξ|r
.

Using properties of geometric series we have∑
r∈2Z
r≤R

r ≲ R and
∑
r∈2Z
r≥R

1

r
≲

1

R
.

and therefore the sum in (2.8) can be bounded by a convergent series uniformly in ϵ

|K̂ϵ(ξ)| ≲ |ξ|R+
1

|ξ|R
.

Choosing R = 1/|ξ| gives the bound |K̂ϵ(ξ)| ≲ 1, uniformly in ϵ which implies that K̂ ∈ L∞.

As a corollary of Lemmas 2.15 and 1.16 we have

Corollary 2.16. Let K be a Calderón-Zygmund potential, then for each f ∈ S(Rn), K ⋆f satisfies
the L2 bound

∥K ⋆ f∥L2 ≲ ∥f∥L2 ,

and can be extended to a bounded linear operator on L2.
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2.5.2 Calderón-Zygmund decomposition

To upgrade the L2 bound to the weak type bound (2.7), we will need use of a certain decomposition,
called (you guessed it) the Calderón-Zygmund decomposition. The decomposition is based on a
fundamental covering Lemma using dyadic cubes that splits an integrable function up into regions
where it is bounded by a certain number and regions where only the functions average over a certain
set of disjoint cubes is controlled.

Lemma 2.17 (The covering Lemma). Let f ∈ L1 and λ > 0, then there exists a countable collection
of disjoint cubes {Qk} such that

1. for each Qk we have

λ ≤ −
ˆ
Qk

|f(x)|dx ≤ 2nλ,

2. |f(x)| ≤ λ almost everywhere on (
⋃

k Qk)
c.

Proof. Consider the unit cube Q0 = [0, 1)n and denote its translate by m ∈ Zn as Qm = Q+m so
that {Qm} form a partition of Rn into disjoint cubes. Additionally for each n ∈ Z we define the
family of dyadic cubes Qn,m = 2nQm of width 2n so that for each fixed j ∈ Z, {Qj,m}m form a
cubic partition of Rn into cubes of side length 2j . We call j the dyadic scale of the cube Qj,m.

Since f is integrable, we can always find an j large enough such that for each m ∈ Zn

−
ˆ
Qj,m

|f(x)|dx ≤ λ.

Now subdivide each cube at scale j into 2n sub cubes of scale j − 1. We select a cube Q at scale
j − 1 if

−
ˆ
Q
|f(x)|dx > λ (2.9)

and call the collection of such cubes S1. Of the remaining non-selected cubes, we divides further
into cubes of scale j − 2 and select the cubes that satisfy (2.9) and call the collection of these
selected cubes S(2). We continue this procedure indefinitely.

The collection of all selected cubes S =
⋃

i S
(i) are clearly disjoint and by construction satisfy

−́
Q |f(x)|dx ≥ λ for all Q ∈ S. However, since each selected cube Q is a subset of a non-selected

cube Q′ of twice the side length, which satisfies −́
Q′ |f(x)|dx ≤ λ, we see that

λ ≤ −
ˆ
Q
|f(x)|dx ≤ 1

|Q|

ˆ
Q′

|f(x)|dx ≤ 2n−
ˆ
Q′

|f(x)|dx ≤ 2nλ.

Now let {Qk} be an enumeration of the selected cubes. If x /∈
⋃

k Qk, then by construction

there is a descending collection of non-selected cubes {Q(j)
x }, Q(j)

x ⊇ Q
(j+1)
x , each one half the side

length of the previous and each containing x. It follows by the Lebesgue differentiation theorem
that for almost every x ∈ (

⋃
k Qk)

c we have

f(x) = lim
j→∞

−
ˆ
Q

(j)
x

|f(y)|dy.

Since each of these cubes {Q(j)
x } is not selected, each average is bounded by λ and therefore the

limit satisfies |f | ≤ λ a.e. on (
⋃

k Qk)
c.
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Using the above Lemma for a given integrable gives rise to the so-called Calderón-Zygmund
decomposition.

Definition 2.18 (Calderón-Zygmund decomposition). Let f ∈ L1 and λ > 0 and let {Qj} be the
corresponding disjoint cubes from Lemma 2.17. Define

g(x) :=

{
f(x) if x /∈ Qk

−́
Qk

f(x)dx if x ∈ Qk.

and let b = f−g. Then the decomposition f = g+b is called the Calderón-Zygmund decomposition
of f .

The functions g and b in the decomposition are often called the good and bad functions respec-
tively due to the fact that g is controlled in L∞ by λ, while b captures the unbounded parts of
f .

Proposition 2.19. The Calderón-Zygmund decomposition f = g + b, with cubes {Qk} has the
following useful properties:

1. ∥g∥L∞ ≲ λ

2. ∥g∥L1 ≤ ∥f∥L1

3. b = 0 on (
⋃

k Qk)
c

4.
´
Qk

bdx = 0

5. ∥b∥L1 ≲ ∥f∥L1

6. |
⋃

k Qk| ≤ 1
λ∥f∥L1

Proof. There properties are easy to verify and left as an exercise.

2.5.3 Proof of Theorem 2.14

We are now equipped to prove the Calderón-Zygmund Theorem 2.14.

Proof. Let f ∈ S(Rn) and let f = g + b be the Calderón-Zygmund decomposition for λ > 0 with
{Qk} the associated family of disjoint cubes. Write

|{|K ⋆ f | > λ}| ≤ |{|K ⋆ g| > λ/2}|+ |{|K ⋆ b| > λ/2}|.

We first estimate the good part by Chebyshev, L2 boundedness and the L∞ bound on g,

|{|K ⋆ g| > λ/2}| ≲ 1

λ2

ˆ
Rn

|K ⋆ g|2dx ≲
1

λ2

ˆ
Rn

|g|2dx ≤ 1

λ
∥g∥L1 =

1

λ
∥f∥L1

To estimate the bad term, we first remove a set of order 1
λ∥f∥L1 . Let yk denote the center of the

cube Qk and let Q∗
k = 2

√
nQk a scaled up version. Moreover we have∣∣∣∣∣⋃

k

Q∗
k

∣∣∣∣∣ ≤∑
k

|Q∗
k| = (2

√
nℓ(Qk))

n

∣∣∣∣∣⋃
k

Qk

∣∣∣∣∣ ≲n
1

λ
∥f∥L1 .

Therefore

|{|K ⋆ b| > λ/2}| ≤ |{x /∈ ∪kQ
∗
k : |K ⋆ b(x)| > λ/2}|+ 1

λ
∥f∥L1 .
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The remaining term we estimate via Chebyshev

|{x /∈ ∪kQ
∗
k : |K ⋆ b(x)| > λ/2}| ≲ 1

λ

ˆ
⋂

k(Q
∗
k)

c

|K ⋆ b|(x)dx.

Using that b is supported on
⋃

k Qk and has mean zero on each Qk, we can write the convolution
above as

(K ⋆ b)(x) =
∑
k

ˆ
Qk

(K(x− y)−K(x− yk))b(y)dy.

Thus, ˆ
⋂

k(Q
∗
k)

c

|K ⋆ b|(x)dx ≤
∑
k

ˆ
(Q∗

k)
c

ˆ
Qk

|K(x− y)−K(x− yk)||b(y)|dydx

=
∑
k

ˆ
Qk

|b(y)|
ˆ
(Q∗

k)
c

|K(x− y)−K(x− yk)|dxdy.

Note that Qk and Q∗
k have the property that for each y ∈ Qk and x /∈ Q∗

k one has |x−yk| ≥ 2|y−yk|
since, by construction, one can fit an annulus whose outer radius is twice as large as its inner radius
into the set Q∗

k\Qk. Thus for y ∈ Qk, denoting y′ = y − yk and x′ = x− yk we have

ˆ
(Q∗

k)
c

|K(x− y)−K(x− yk)|dx ≤
ˆ
|x′|≥2|y′|

|K(x′ − y′)−K(x′)|dx′ ≲ 1,

by the smoothness condition (2.6). It follows that

ˆ
⋂

k(Q
∗
k)

c

|K ⋆ b|(x)dx ≲
∑
k

ˆ
Qk

|b(x)|dx ≲ ∥f∥L1 ,

which completes the proof of the weak type inequality.
The proof of the Lp bound now follows from the weak type estimate exactly as in step 2 in the

proof of the Hardy-Littlewood maximal inequality Theorem 2.4.

Corollary 2.20. The Riesz transform extends to a bounded linear operator on Lp for p ∈ (0,∞).
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